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Abstract

An analysis is made of the attenuation of sound by vorticity production in a bias flow aperture. A modified form of

the Cummings equation describing unsteady flow through a small aperture is used to extend the linear theory of the bias

flow conductivity of a circular aperture in a thin wall of Howe (1979. On the theory of unsteady high Reynolds number

flow through a circular aperture. Proceedings of the Royal Society of London A 366, 205–233) to a wall of arbitrary

thickness and to examine the influence acoustic nonlinearity within the aperture. Numerical results are compared with

existing analytic predictions of linear theory. It is shown that attenuations predicted by both linear and nonlinear

theories agree over a wide range of incident acoustic pressures, approaching in amplitude that required to maintain the

steady mean flow through the aperture. The dominant nonlinear effect is a small reduction (less than about 5%) in the

mean bias flow velocity. Application of the Cummings equation in the linear regime leads to a new, simple formula for

the bias flow conductivity for a screen of finite thickness.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Vorticity is produced by fluid motion over a solid surface, the rate of production being greatest in regions where the

pressure and velocity in the primary flow change rapidly, such as at corners and sharp edges. The kinetic energy of the

vortex motion is derived from the primary flow, and when this is a sound wave incident, for example, on a sharp edge,

vorticity diffuses from the edge and causes the sound to be damped. For a nominally stationary fluid the dissipation of

sound is caused by the nonlinear convection of vorticity from the edge and its subsequent viscous damping, both of

which are generally weak (Zinn, 1970; Melling, 1973; Cummings, 1984). The damping is significantly increased,

however, in the presence of mean flow (Dean and Tester, 1975; Bechert et al., 1977; Howe, 1979,1980,1998; Ver,

1982,1990; Hughes and Dowling, 1990; Dowling and Hughes, 1992; Dupere and Dowling, 2000; Eldredge and Dowling,

2003). In many applications the flows are at sufficiently high Reynolds numbers that viscosity is important only very

close to the boundary at which the vorticity is produced; the shed vorticity is swept away by the mean flow, and its

kinetic energy is permanently lost to the sound.

The damping is easily quantified at low Mach numbers, when locally the effects of compressibility on the

shed vorticity are not important. Then the rate P of dissipation of acoustic energy can be expressed as an integral
e front matter r 2005 Elsevier Ltd. All rights reserved.
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of the form (Howe, 1980,1998)

P � ro

Z
x ^ v � u d3x, (1.1)

where ro is the mean density, v the velocity, x the vorticity, and u is the acoustic particle velocity. In the absence of

mean flow a sound wave of amplitude e incident on an edge will produce shed vorticity x and local velocity fluctuations

v both of order e, so that this equation implies that the damping P is relatively weak, being third order ð�Oðe3ÞÞ in the

acoustic amplitude.

When, however, there exists an independent and substantial mean flow both v and the vorticity x can have large

mean components that are independent of the incident sound. In this case the time-dependent part of x ^ v�OðeÞ, so
that the time averaged dissipation predicted by (1.1) is formally increased by an order of magnitude to P�Oðe2Þ. This is
the theoretical explanation of the enhanced damping achieved by a bias flow perforated screen of the type illustrated

schematically in Fig. 1. A nominally steady, low Mach number mean flow through the screen (conveyed by the bias flow

‘jets’ in the apertures) is maintained by application of a steady pressure load. When the Reynolds number (based on

aperture diameter) is large, the flow through an aperture is uninfluenced by viscosity except near the aperture edge,
Figure 2. Linearized model of sound interacting with a bias flow jet.

Figure 1. Schematic bias flow perforated screen.
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where the flow separates to form a jet. Vorticity generated at the edge by incident sound is swept away in the jet, and

damping occurs by the transfer of acoustic energy to the kinetic energy of the jet.

The linear theory of dissipation in a bias flow jet (Howe, 1979,1998) is based on the model of Fig. 2, involving an

acoustically compact circular aperture of radius R in a rigid wall of negligible thickness, and is briefly reviewed in

Section 2 of this paper. Predictions of this linear theory applied to damping by bias flow perforated screens have shown

good agreement with experiment (Ver, 1982,1990; Hughes and Dowling, 1990; Eldredge and Dowling, 2003). There are

many applications, however, where the amplitude of the pressure loading pþ�p� is large and comparable with the mean

pressure drop across the screen responsible for the bias flow. Such cases are not strictly covered by the linear theory, and

one purpose of this paper is to consider an extension of the theory to large acoustic amplitudes. Special cases of this

problem have been discussed by Jing and Sun (2002) using an approximate numerical treatment based on the ‘vortex

blob method’, with particular attention to situations where the acoustic amplitude is large enough to produce mean flow

reversal. In the present paper, however, interest is restricted to situations where the acoustic amplitude is large, but not

large enough to induce reversal of the mean flow. This is the case of most practical importance. Our new approach is

based on a modified form of Cummings’ (1984,1986) empirical equation for unsteady flow through an aperture subject

to unsteady pressure loading. It can also be used to extend the elementary thin wall theory of Howe (1979,1998) to

account for finite wall thickness. These applications of the Cummings equation are discussed in Sections 3 and 4, and

the results are used (Section 5) to derive a simple general formula for the bias flow conductivity for an aperture in a

thick wall.
2. Linear theory for a thin wall

The mean jet velocity in the plane of the aperture in Fig. 2 is denoted by U. It is modulated by a locally uniform time-

harmonic pressure differential equal to the real part of ðpþ � p�Þe
�iot. The motion near the aperture can be regarded as

incompressible, with unsteady volume flux Qe�iot through the aperture (from ‘above’ to ‘below’ the plate in Fig. 2). The

acoustic properties of the bias flow jet are then determined by the Rayleigh conductivity KR defined by (Howe, 1998;

Rayleigh, 1945)

KR ¼
�ioroQ

ðpþ � p�Þ
. (2.1)

An approximate formula for KR is known (Howe, 1979,1998) for an aperture in a thin wall when U is small compared

to the speed of sound. An ideal jet actually contracts to an asymptotic diameter equal to about 0.62 times that of the

aperture, in the manner indicated by the dashed profile in the figure (Lamb, 1932; Birkhoff and Zarantonello, 1957);

when the flow is turbulent, however, turbulence diffusion will tend to produce an expanding flow. In the linearized

approximation the fluctuations in the flow produced by the unsteady pressure differential pþ � p� are regarded as

axisymmetric, and the additional vorticity generated at the edge of the aperture may be envisaged as a succession of

vortex rings with infinitesimal cores, which convect at a velocity Uc and form an axisymmetric vortex sheet within the

mean shear layer of the jet. Experiment (Hughes and Dowling, 1990; Dowling and Hughes, 1992) indicates that to a

good approximation the convection velocity Uc may be set equal to the mean jet velocity U in the plane of the aperture.

To calculate the conductivity the back reaction of these vortex rings on the aperture flow must be determined. This is

easily done if the variation in the radius of a ring is neglected, so that the vortex sheet is cylindrical, and equal to the

aperture radius R (as in Fig. 2), in which case it is found that (Howe, 1979,1998)

KR ¼ 2RðG� iDÞ, (2.2)

where the real and imaginary components G, D are determined by

G� iD ¼ 1þ
ðp=2ÞI1ðkRÞe�kR � iK1ðkRÞ sinhðkRÞ

kR½ðp=2ÞI1ðkRÞe�kR þ iK1ðkRÞ coshðkRÞ�
; k ¼

o
U

40, (2.3)

where I1, K1 are modified Bessel functions. The functions G and D are shown plotted against the Strouhal number

oR=U in Fig. 3.

At very high frequencies (G�1, D�0) vorticity production by the sound has a negligible influence on the flow because

the length scale of the unsteady vorticity �U=o is small and velocities induced by successive elementary vortex rings

largely cancel; the conductivity then reverts to its value KR ¼ 2R in the absence of the jet. On the other hand, when

oR=U ! 0, unsteady vorticity of one sign can stretch many aperture diameters downstream and produce a strong

effect on the flow.
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Figure 3. Linear theory conductivity of a bias flow circular aperture.
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Because the local motion at the aperture is approximated as incompressible, the power P extracted from the

oscillating pressure load pþ � p� to produce vorticity is just equal to hReðQe�iotÞReð½pþ � p��e
�iotÞi, where the angle

brackets denote a time average, and the real parts of the fluctuating quantities are to be taken. Using Eqs. (2.1) and

(2.2), we find

P ¼ 1
4
ð½pþ � p��

�Qþ ½pþ � p��Q
�Þ

¼
jpþ � p�j

2RD
roo

, ð2:4Þ

which is positive definite for all real frequencies.

The linearized theory leading to Eq. (2.3) is not strictly applicable to apertures in a wall of finite thickness ‘w, say. In

that case the definition (2.2) is written

KR ¼ KoðG� iDÞ, (2.5)

where Ko is the conductivity in the absence of the bias flow, given approximately by

Ko ¼
A

2‘o þ ‘w

; ‘o ¼
pR

4
; A ¼ pR2

� �
. (2.6)

Explicit approximations for G and D when ‘w40 are discussed in Section 5.
3. The Cummings equation applied to a bias flow aperture

Consider a circular aperture in a rigid plate (as in Fig. 2) when the plate has finite thickness ‘w. Let the mean

flow in the absence of sound be produced by a pressure drop po across the plate. In terms of the ‘contraction ratio’ s of

the jet, the mean velocity U in the entrance plane of the aperture is determined by the steady form of Bernoulli’s

equation

U2

2s2
¼

po

ro

. (3.1)

In the presence of sound, choose the time origin so that the applied time-harmonic pressure loading can be taken in

the form

pI cosðotÞ ¼ Refðpþ � p�Þe
�iotg, (3.2)

where pI40. Let V ðtÞ be the corresponding change in U produced by the additional pressure pI cosðotÞ, so that the jet

velocity averaged over the plane of the aperture is U þ V ðtÞ. Then the Cummings empirical equation (Cummings,
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1984,1986) assumes the following form when expressed in terms of V ðtÞ:

‘̄ðtÞ
dV

dt
þ

1

2s2
ðU þ V ÞjU þ V j ¼

po þ pI cosðotÞ

ro

. (3.3)

This describes the motion of a slug of fluid of variable effective length ‘̄ðtÞ and variable mass roA‘̄ðtÞ (where A ¼ pR2

is the area of the aperture) subject to an excess driving pressure po þ pI cosðotÞ and a resistive force

�ð1=2s2ÞroAðU þ V ÞjU þ V j.

If the flow were entirely irrotational (no jet formation) the length ‘̄ðtÞ would be constant and equal approximately to

2‘o þ ‘w, where ‘o � ðp=4ÞR is the ‘end-correction’ of the aperture opening into irrotational flow on one side of the plate

(Howe, 1998; Rayleigh, 1945). When a jet is formed, however, Cummings argued that ‘̄ðtÞ becomes a function of the

effective length L of the jet defined by

LðtÞ ¼
Z t

0

jU þ V ðtÞj dt, (3.4)

where the time t is measured from the beginning of the acoustic half cycle during which the sign of U þ V ðtÞ is constant.

From an examination of data from several experiments, in which the working fluid was either water or air, Cummings

(1986) proposed the following empirical relation between ‘̄ðtÞ and L:

‘̄ðtÞ ¼ ‘o þ
‘w þ ‘o

1þ ðL=2RÞ1:585=3
. (3.5)

Thus, as the jet length L increases from zero, ‘̄ decreases because the inertia of the ideal potential flow through the

aperture and on the jet side of the plate is progressively replaced by that of the jet.

However, this formula must be modified when the jet lengthL is indefinitely large, which occurs when pIppo, so that

the net driving pressure po þ pI cosðotÞ never changes sign. This is the case in typical bias flow applications to acoustics,

even when the acoustic amplitude is large. Then the second term on the right of Eq. (3.5) rapidly decreases to zero and

‘̄ðtÞ ! ‘o. This would imply that only the fluid inertia on one side of the aperture affects the motion through the

aperture, whereas pulsational motions actually occur on both sides, even in the presence of the jet. Thus, whereas

Cummings’ formula (3.5) provides a good representation of the inertia fluctuations during jet formation, it ceases to be

effective in the absence of flow reversal in the aperture. At high frequencies (oR=U41, to the right of the dissipation

peak in Fig. 3) pulsations in the momentum flux through the aperture cannot continue to be absorbed by acceleration of

the incompressible jet, whose inertia becomes unbounded asL!1. In this case the unsteady volume flux through the

aperture must cause pulsations in the jet cross-sectional area within and just downstream of the aperture, with little or

no effect in the body of the jet. This produces an irrotational response in the exterior fluid that must be essentially

similar to that in the absence of the jet. In these circumstances ‘̄ must revert to its value ‘̄ ¼ 2‘o þ ‘w for a jet-free

aperture flow.

But, at low frequencies the changes in the jet can be regarded as quasi-static and the acceleration term on the left of

Cummings’ equation (3.3) becomes small. Then the applied pressure causes the jet kinetic energy to change slowly, the

transfer mechanism being represented by the quadratic term on the left of (3.3). The transition between the high- and

low-frequency responses of the jet is governed by the value of the effective contraction coefficient s. According to

Cummings (1986), the approximation s ¼ 0:75 gives predictions that agree well with experiment. Our comparison

below with the linear thin-wall theory will confirm this conclusion for the bias flow problem, and also support the

hypothesis ‘̄ ¼ 2‘o þ ‘w at higher frequencies.
4. Numerical results for nonlinear aperture flow

4.1. Modified bias flow equation

After this preliminary discussion of the Cummings equation, we now introduce the modified form suitable for

studying bias flow oscillations. It will be assumed throughout that the mean bias flow pressure po is sufficiently in excess

of the acoustic pressure load pI across the plate to preclude flow reversal in the aperture. This implies that jU þ V j �

ðU þ V Þ in (3.3). Introducing this change in Eq. (3.3), subtracting Eq. (3.1), and putting ‘̄ ¼ 2‘o þ ‘w, results in the

following modified Cummings equation:

ð2‘o þ ‘wÞ
dV

dt
þ

V

s2
U þ

V

2

� �
¼

pI cosðotÞ

ro

, (4.1)
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where

‘o ¼
pR

4
; s ¼ 0:75. (4.2)

The steady-state velocity fluctuations forced by the time-harmonic applied pressure also have period 2p=o but are not

necessarily sinusoidal, and we must put

V ðtÞ ¼ Re
X1
n¼0

Vne
�inot. (4.3)

Fig. 4 illustrates the predicted influence of nonlinearity in the aperture for the three cases pI=roU2 ¼ 0:1, 0.5, 1.0 at the

three Strouhal numbers oR=U ¼ 0:25, 1, 2 for an aperture in a thin wall ð‘w ¼ 0Þ. The figure shows plots of V ðtÞ=U ¼

nondimensional unsteady volume flux through the aperture, calculated by numerical integration of (4.1) starting at

t ¼ 0 with V ¼ 0 and continuing until a steady state is established. The results indicate that nonlinearity becomes

progressively important as the driving pressure amplitude increases principally at the lower frequencies oR=Uo1 (to

the left of the linear theory damping peak in Fig. 3).

4.2. Comparison with linear theory

According to linear theory the unsteady volume flux is determined by the complex conductivity KR ¼ KoðG� iDÞ, in
terms of which Eq. (2.1) implies that

G ¼
2roo
KopI

ReðQe�iotÞ sinot
� �

,

D ¼
2roo
KopI

ReðQe�iotÞ cosot
� �

. ð4:4Þ

In the nonlinear problem the linear theory volume flux ReðQe�iotÞ is replaced by AV ðtÞ. We can formally perform the

same calculation to determine the corresponding values of the frequency dependent coefficients G, D. This is equivalent
Figure 4. Typical plots of the unsteady volume flux through the aperture predicted by numerical integration of the Cummings

equation (4.1).
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to replacing ReðQe�iotÞ in (4.4) by ReðAV 1e
�iotÞ; the calculation can also be performed directly using the numerical

solution of Eq. (4.1), in terms of which

G ¼
2rooA

KopI

o
2p

Z toþ2p=o

to

V ðtÞ sinðotÞ dt,

D ¼
2rooA

KopI

o
2p

Z toþ2p=o

to

V ðtÞ cosðotÞ dt; ð4:5Þ

where to is large enough for the steady-state solution to be fully established.

By evaluating these integrals for pI=roU2
51 predictions of the Cummings equation (4.1) can be compared with the

linear theory of Section 2. To do this we must set ‘w ¼ 0 in (4.1), corresponding to Ko ¼ 2R for a circular aperture in a

thin wall. In Fig. 5 the linear theory values of G and D (dotted curves: � � �) are compared with predictions of (4.5) for the

three cases s ¼ 0:6, 0.75, 0.85 when pI=roU2 ¼ 0:1. It can be seen that the value s ¼ 0:75 recommended by Cummings

(1986) yields excellent agreement with linear theory for G, and the closest agreement with linear theory for D.
At large Strouhal numbers oR=U , the terms in the expansion (4.3) decrease rapidly with n. This is not unexpected,

because in this limit the left-hand side of Eq. (4.1) is dominated by the acceleration inertia term. The leading

approximation to the solution when ‘w ¼ 0 is then easily shown to be the linear theory approximation

V ðtÞ �
2pI

prooR
sinotþ

2

ps2ðoR=UÞ
cosot

� �
;

oR

U
b1. (4.6)

In this limit Eqs. (4.5) imply that

G � 1; D �
2

ps2ðoR=UÞ
.

The corresponding asymptotic values obtained from the linear theory formula (2.3) are

G � 1; D �
1

ðoR=UÞ
.

Figure 5. Comparison of KR=2R ¼ G� iD determined by linear theory ( ddd ) and by the Cummings equation for pI=roU2 ¼ 0:1 and
s ¼ 0:6, 0.75, 0.85.
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These limits coincide provided that s ¼
ffiffiffiffiffiffiffiffi
2=p

p
� 0:8, which again is close to the empirical value of s recommended by

Cummings (1986).

The terms na1 in the expansion (4.3) represent the nonlinear effects of flow through the aperture. However, the

coefficient D and Eq. (2.4) (with pþ � p� ¼ pI ) still determine the energy dissipated (the work done) by the pressure pI in

generating vorticity in the aperture. None of the coefficients Vn for na1 contributes to this dissipation. A detailed

examination of the numerical solutions for pI=roU2 as large as 1 indicates that Vn is small for nX2 and becomes

negligible when oR=U41. The coefficient V0 is real and negative for oR=Ua0, and represents a reduction in the mean

volume flux produced by the unsteady pressure, but the effect is small except possibly at very low frequencies, as

indicated in Fig. 6. The behaviour as oR=U ! 0 is nonuniform, because a steady additional applied pressure pI actually

increases the flux through the aperture.
4.3. Effect of amplitude on dissipation

The plots in Fig. 7 are evaluated from Eqs. (4.5) using the numerical solutions for the two extreme cases

pI=roU2 ¼ 0:1, 1.0. They indicate that the influence of amplitude on the damping of the incident pressure field is

negligible. Indeed, the solution

V ðtÞ ¼
2pI

proU

½ðoR=UÞ sinotþ ð2=ps2Þ cosot�

½ðoR=UÞ2 þ ð2=ps2Þ2�
(4.7)
Figure 6. The mean flow coefficient V0 in the expansion (4.3) of the solution of Cummings equation for pI=roU2 ¼ 0:1, 0.5, 1.0.

Figure 7. KR=2R ¼ G� iD determined by the Cummings equation for pI=roU2 ¼ 0:1, 1.0.
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of the linearized form of the Cummings equation (4.1) (obtained by deleting the term V=2 from the second term on the

left-hand side) yields

G� iD ¼
oR=U

oR=U þ 2i=ps2
. (4.8)

The frequency dependances of G and D predicted by this simple formula coincide with those represented by the solid

curves in Fig. 7 for pI=roU2 ¼ 0:1.
5. Conclusion

The attenuation of sound by vorticity production at surfaces and edges is greatly enhanced when a mean flow is

present to sweep away vorticity energized by the sound. The linear theory of attenuation in a bias flow aperture in a thin

wall agrees well with experiment. Linear and nonlinear estimates of dissipation are consistent over an order of

magnitude variation in the amplitude of the perturbation pressure, up to levels approaching in magnitude that required

to maintain the mean flow through the aperture. In both the linear and nonlinear regimes the bias flow conductivity for

a thin wall ð‘w ¼ 0Þ is well approximated by the simple formula

KR ¼ 2R
oR=U

oR=U þ 2i=ps2

� �
, (5.1)

where U is the mean velocity in the plane of the aperture and the contraction ratio s � 0:75. This provides a useful

alternative to the more complicated linear theory approximation (2.3) of Howe (1979,1998). The principal effect of

nonlinearity is a small reduction in the mean bias flow velocity (typically less than about 5%).

The approximate agreement between the Cummings-equation formula (5.1), for which vortex shedding occurs in a jet

with contraction ratio so1, and the linear theory model (2.3) for which the shed vorticity is convected away without

contraction can, perhaps, be explained as follows. Predictions at high frequencies are the same because phase

interference between the influence of successive shed ‘vortex rings’ implies that the motion in the aperture is affected

only by vortices close to the aperture, before significant contraction has occurred. The agreement at low frequencies is

more approximate and is achieved by suitable adjustment of the effective contraction ratio s in the Cummings equation.

Cummings’ equation (4.3) applied to a wall of finite thickness ð‘w40Þ also indicates that nonlinearity has a negligible

influence on the conductivity when flow reversal does not occur, in which case

KR ¼
Koðo‘=UÞ

ðo‘=UÞ þ i=s2
; where Ko ¼

pR2

‘
; ‘ ¼

pR

2
þ ‘w. (5.2)

This conclusion is qualitatively consistent with the linearized numerical investigation of Jing and Sun (1999), but it has

not yet been validated experimentally.

Apart from the relevance of this formula to noise control engineering, it also has important applications to estimating

acoustic losses and the corresponding broadening of resonance bandwidths in the human vocal tract. It can be used, for

example, to quantify acoustic losses in the larynx, where pulses of air create the voice source. Voice pulses often occur at

a relatively slow, ‘quasi-steady’ rate of 120Hz for an adult male voice, and the maximum flow speed through the glottis

during phonation can approach 30–40m/s; for a good portion of the glottal pulse the slowly varying mean flow speed is

therefore very much greater than the acoustic particle velocity (which does not exceed �1m/s in voiced speech). In

particular the results of this paper confirm and sharpen earlier estimates of bias flow losses in the vocal tract (Fant,

1970). Thus, it can be shown that Fant’s (1970, p. 269) approximation rU=pR2 for the ‘differential resistance’ Rd of

acoustic waves in the vocal tract produced by jet flows should take the modified and enhanced value Rd�rU=s2pR2

consistent with the Cummings equation.
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